Jumat, 21 November 2014

Anova Atau Anova

*Pengertian Anova

Anava atau Anova adalah sinonim dari analisis varians terjemahan dari analysis of variance, sehingga banyak orang menyebutnya dengan anova. Anova merupakan bagian dari metoda analisis statistika yang tergolong analisis komparatif lebih dari dua rata-rata (Riduwan.2008.Dasar-dasar Statistika.Bandung:Alfabeta).
Analisis Varians (ANAVA) adalah teknik analisis statistik yang dikembangkan dan diperkenalkan pertama kali oleh Sir R. A Fisher (Kennedy & Bush, 1985). ANAVA dapat juga dipahami sebagai perluasan dari uji-t sehingga penggunaannya tidak terbatas pada pengujian perbedaan dua buah rata-rata populasi, namun dapat juga untuk menguji perbedaan tiga buah rata-rata populasi atau lebih sekaligus.
Jika kita menguji hipotesis nol bahwa rata-rata dua buah kelompok tidak berbeda, teknik ANAVA dan uji-t (uji dua pihak) akan menghasilkan kesimpulan yang sama; keduanya akan menolak atau menerima hipotesis nol. Dalam hal ini, statistik F pada derajat kebebasan 1 dan n-k akan sama dengan kuadrat dari statistik t.
ANAVA digunakan untuk menguji perbedaan antara sejumlah rata-rata populasi dengan cara membandingkan variansinya. Pembilang pada rumus variansi tidak lain adalah jumlah kuadrat skor simpangan dari rata-ratanya,.Istilah jumlah kuadrat skor simpangan sering disebut jumlah kuadrat (sum of squares). Jika jumlah kuadrat tersebut dibagi dengan n atau n-1 maka akan diperoleh rata-rata kuadrat yang tidak lain dari variansi suatu distribusi.

Seandainya kita mempunyai suatu populasi yang memiliki variansi dan rata-rata. Dari populasi tersebut misalkan diambil tiga buah sampel secara independent, masing-masing dengan n1, n2, dan n3. Dari setiap sampel tersebut dapat ditentukan rata-rata dan variansinya, sehingga akan diperoleh tiga buah rata-rata dan variansi sampel yang masing-masing merupakan statistik (penaksir) yang tidak bias bagi parameternya. Dikatakan demikian karena, dalam jumlah sampel yang tak hingga, rata-rata dari rata-rata sampel akan sama dengan rata-rata populasi  dan rata-rata dari variansi sampel juga akan sama dengan variansi populasi 
Ada dua hal yang perlu diperhatikan, yaitu:
1.      Kita memiliki 3 buah variansi sampel yang masing-masing merupakan penaksir yang tidak bias bagi variansi populasinya. Jika n1=n2=n3=.....=nk, maka seluruh variansi sampel tersebut dapat dijumlahkan dan kemudian dibagi dengan banyaknya sampel (k) sehingga akan diperoleh rata-rata variansi sampel yang dalam jangka panjang akan sama dengan variansi populasi. Dalam bahasa ANAVA, rata-rata variansi sampel ini dikenal dengan rata-rata jumlah kuadrat dalam kelompok (RJKD) atau mean of squares within groups (MSw).
2.      Kita memiliki 3 buah rata-rata sampel yang dapat digunakan untuk menentukan rata-rata dari rata-rata sampel. Simpangan baku distribusi rata-rata sampel atau galat baku rata-rata adalah simpangan baku distribusi skor dibagi dengan akar pangkat dua dari besarnya sampel.

Persoalan kita sekarang adalah bagaimana membedakan pengaruh yang sistematik dari pengaruh yang tidak sistematik (acak). ANAVA dan statistika inferensial pada umumnya mendekati persoalan ini dengan menggunakan teori peluang. Statistika inferensial bertugas untuk menjawab suatu pertanyaan yang dapat dirumuskan sebagai berikut: :” jika hipotesis nol ternyata benar berapakah peluang memperoleh harga statistik tertentu?” Misalkan dalam ANAVA, kita memperoleh F=3,96. Pertanyaan yang harus dijawab adalah “berapa besar peluang memperoleh F=3,96 jika ternyata hipotesis nol itu benar?” Paket analisis statistik pada komputer umumnya memberikan jawaban terhadap pertanyaan tersebut secara langsung dalam bentuk p= 0,25, 0,01, 0,001 dan sebagainya. namun jika dilakukan secara manual maka harga Fhitung harus dibandingkan dengan nilai kritis yang sudah disediakan dalam bentuk Ftabel pada derajat kebebasan dan tingkat keyakinan. Nilai p yang lebih kecil dari nilai yang ditentukan menunjukkan penolakkan terhadap H0. Kesimpulan yang sama diperoleh jika ternyata Fhitung>Ftabel. Menolak hipotesis nol berarti menyimpulkan bahwa perbedaan antara MSB dengan MSW berkaitan dengan pengaruh yang sistematik dari faktor atau peubah bebas yang diteliti. (Furqon. 2009. Statistika Terapan untuk Penelitian. Cetakan ketujuh. ALFABETA: Bandung).

Tidak ada komentar:

Posting Komentar